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Limits of screened-Coulomb amplitudes 

Marius Kolsrud 
Institute of Physics, University of Oslo, Oslo 3, Norway 

Received 12 December 1977 

Abstract. From two examples, one with an exponentially screened and the other with a 
smoothly cut-off Coulomb potential, arguments and partial proofs are given for the 
following conjecture. The absolute values of screened-Coulomb T matrices may converge 
in the limit of vanishing screening to the results of standard (i.e. short-range) theory. The 
condition is that the values of the momenta should be chosen before the limiting process. 

1. Introduction 

In recent years much work has been done to modify and extend scattering theory, in 
order to cover the Coulomb case (Dollard 1964, 1966, 1968, PrugoveEki, 1971, 
1973a, b, Zorbas 1974a, b, 1976, 1977). The main idea is to modify or ‘renormalise’ 
the wave operator by adding to the Hamiltonian certain time- and momentum- 
dependent terms which in a sense compensate the awkward long-range effects of the 
Coulomb potential. 

When the standard short-range theory was used also for the long-range Coulomb 
scattering, expressions were obtained which however were defined only off the energy 
shells (Schwinger 1947, 1964, Okubo and Feldman 1960, Mapleton 1961, Hostler 
1964). In order to remedy the situation, one introduced screenings of the Coulomb 
potential, and looked for possibly useful limits by vanishing screening (Dalitz 1951, 
Kacser 1959, Gorshkov 1961, Ford 1964, 1966, Rodberg and Thaler 1967). For a 
comprehensive survey, with numerous references, see Chen and Chen (1972). 

It is the author’s opinion, however, that these earlier investigations of Coulomb 
screening were not extended and completed towards the useful general conclusions 
which seem to be valid, and which do not seem to be sufficiently well known. Even if 
the aforementioned new renormalisation procedures exist, it would nevertheless be 
convenient to know exactly what information may be extracted from the standard 
theory for the limiting case of vanishing screening of the Coulomb potential. 

In the present paper we make the following conjecture. The absolute values of 
screened-Coulomb T matrices may converge in the limit of vanishing screening to the 
results of standard short-range theory (see § 6). The condition is simply that the 
values of the momenta should be fixed before the limiting process. (This condition was 
in fact implicit in the treatment of Dalitz (1951), concerning the transition from the 
Yukawa to the Coulomb scattering amplitude. Later some limits of the cut-off Cou- 
lomb T matrix were evaluated by Ford (1964, 1966), who employed the above- 
mentioned limiting procedure.) We shall treat in more detail these two examples, 
firstly an exponentially screened-Coulomb (i.e. Yukawa) potential, and secondly a 
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1272 M Kolsrud 

smoothly cut-off Coulomb potential. The sharp cut-off, used for example by Ford, 
leads to certain extra problems (Semon and Taylor 1976), which disappear when a 
smooth ‘tail’ potential is added. Our method will be partly to give proofs for special 
cases of our assumption, and partly to check the assumption by employing old and 
new calculations to various orders. 

2. Short-range potentials 

For comparison and easy reference we present a short summary of the standard 
formulas, valid when rV(r)  - 0. 

?-bW 

2.1. Total amplitudes 

We shall use the amplitudes f, g and t, which are given respectively by (h  = 1): 

f ( i ,  k ) :  eikr +eik.r - $(r, k ) ,  r OD+r 

g ( p ,  k )  = I d3r e-ipV(r)+(r,  k ) ,  (2.2) 2T 

where k, = k + ie + k, i = r/r, and 

Equation (2.3) corresponds to the Lippmann-Schwinger equation T = V + VGoT for 
the transition operator T, with t = -4r2mT and v = -4r2mV. 

On the energy ‘half’-shell and on the ‘total’ shell one has, respectively, 

( 2 . 5 ~ )  

(2.5b) 

2.2. Partial amplitudes 

The total amplitudes a ( = &  f, g, r, U )  are expanded in partial ‘waves’ in the following 
way: 

For the partial amplitudes al(=J/I, h, gl, ti, v i )  one then has respectively 

. - I  1 
1 +I(r, k )  = 4I(r, k )  - exp(i&) - sin(kr -fh +SI), 

k r m l  kr 
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.m 

3. Coulomb potential 

We write 

ZZ’e2m 
k *  

= -- ZZ’e2 vk 1 - -- - V =  Vc(r)=-- 
r m r ’  

3.1. Total amplitudes 

The Coulomb scattering solution of the Schrodinger equation is 

&(r, k)=exp(&v)r(l  -iv)exp(ik.r)F(iu, 1, i(kr-k.r)) 

1 - exp[-iv ln(2kr)l exp(ik.r)+exp[+iu ln(2kr)l- exp(ikr)fc(3, k), 
kr-k.r>>l  r 

where 
2 uk fc(t, k)  = exp( iv  In-+ 4k2  2iu0), 

(P - k)  
with p = k3 and uo = arg r ( l  -iv). 

1273 

(2..8a) 

(2.8b) 

(2.9) 

(2.10) 

(2.11) 

( 2 . 1 2 ~ )  

(2.12b) 

( 3 . 2 ~ )  

(3.26) 

( 3 . 3 ~ )  

(3.3b) 

The modified form of the first factor in the first term of (3.2b) is obtained from the 
usual one because of the asymptotic form of the second factor, namely 

exp(ikr) exp(-ikr) 
exp(ikr[) - - S(1-5)- ikr 6(1+ 5) .  kr>>l  ikr (3.4) 

Hence only [ - E . $  = -I contributes, because kr-k.r  >> 1 requires that 5 # +1. 
We emphasize that the Coulomb scattering amplitude f c  in (3.3a) cannot be 

obtained from an equation such as (2.2) with p = k, partly because (JIc does not satisfy 
the usual integral equation.? 

t A modified integral equation which is satisfied by & is given by the author (Kolsrud 1977). (See appendix 
(A.25)). 
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The amplitude g, for p f k exists, however, and is defined by 

gc(P, k) = !z gc.(P, k), p f k ,  

where (Guth and Mullin 1951) 

( 3 . 5 2 )  

g c S ( p ,  k)= -- d3r e-‘rVc(r)&(r, k) (3 .56 )  
2?r “ J  

= ey=/2r(i - iv) 2vk (p-k)2+t2] i ’  
( p  - k)’+ t2 [ p 2  - ( k  + ie)2 

(3 .5c )  

Putting p = k and comparing with (3 .3) ,  we get the ‘anomalous’ relation 

g c , ( p ,  k)p=k - exp ( 3 . 5 d )  
S - 0  

For later use, g ,  is expanded in powers of v. The lowest-order terms are 

( 3 . 6 ~ )  

(3 .6b)  

where 

( 3 . 6 d )  

and y is Euler’s constant. 
Even if the Coulomb case is not covered by the standard theory in § 2, there exists 

nevertheless a solution of the LS equation ( 2 . 3 )  with z1 = uc, but only for p # k # p’, i.e. 
off the total energy shell. One of the many representations of this Coulomb t matrix is 
(cf Chen and Chen 1972) 

where 

( p 2 - k S ) ( p ’ 2 - k : )  
K =  

k 7 P  - P Y  
Expanding the transition matrix in (3 .7u) ,  we get 

( 3 . 7 u )  

(3 .7b )  

( 3 . 8 ~ )  

(3 .8b )  

Hence the Fourier transform (2.4) of VJr)  is defined by means of the convergence factor exp(-er), as 
usual. 
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2 u3k 
tL3’(p, p ’ ;  k,) = - , 2 ( 1 +  K>-’”(Li2(t+)-LiZ(t-)), 

( P - P )  
( 3 . 8 ~ )  

where 

1 
t* = -[ 2 + K * 2( 1 $. K)’ /*] ,  

and Euler’s dilogarithm (Grobner and Hofreiter 1950) 

(3.8d) 
K 

(3.8e) 

We observe that the Coulomb amplitudes f,, gc and t, are defined in different 
regions of the (double) momentum space. The absolute values of g, and tc, however, 
exist in common regions. From ( 3 . 5 ~ )  it follows that 

According to formulae by Chen and Chen (1972) one gets 

On the half-shell p’ = k we thus have 

Itcl : lgcl = lr12: Irl, (3.11) 

and on the total shell p’ = k = p 

Itcl : lgcl : lfcl = lr12: Irl: 1 ,  (3.12) 

in (3.9) and lrI2 in (3.10) constitute the unlike the standard cases (2.5). The factors 
Coulomb anomalies, in addition to the infinite phases (see e.g. (3.5d)). 

3.2. Partial amplitudes 

Expanding &(r, k) in ( 3 . 2 ~ )  in partial waves, like (2.6, 2.7), one has 

(2kr)’F(l+ 1 -iu, 21 + 2 ,  -2ikr) ( 3 . 1 3 ~ )  

1 - exp(iq)- sin[ kr - 14  7r -t U ln(2kr) + cl], 
k,>>l kr (3.13b) 

where 

vl = arg r(Z + 1 - iv). ( 3 . 1 3 ~ )  

Concerning an expansion like (2.6) of f,(p^, k) in (3.3a), one sees that it cannot be 
inverted to give f,,, (leading to a divergent integral). We would rather choose the 
following procedure: 
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As shown in appendix equation (AS) we obtain in the first place the series 

1 "  
fc(@, k)= 2ik ,F; [exp(2iuIl-1)-exp(2i~I+l)IPj(5), 

where [=@.l# *l. (The lth term+O(l-"').) From the simple identityt 

(3.14) 

we may formally write (3.14) as 

(3.16) 

where c is arbitrary. With c = 1 we get the usual form 

(The constant c does not contribute, as 2(21+ l )Pf( t )  = 2S(5- 1) = 0, because 
(3.2b).) 

rather be considered as a distribution, according to Taylor 1974. 

equation like (2 .8a) ,  by reason of the logarithmic phase in (3.13b). 

f 1 in 

We note that the series (3.16) is divergent, (the lth term+O(l'/'>) and should 

We should also remember that fc,I(k) cannot be obtained from &(r, k )  by an 

However, the partial amplitude g, , l (p ,  k)  exists for p # k,  and is given by (cf (3.5)) 

gc . l (P ,  k)  = lim gcE , / (Py  k ) ,  P # k,  ( 3 . 1 8 ~ )  
S+O 

where-like (2.9)- 
m 

gc., i(p,  k ) =  -2m drr'jl(pr) e-"VC(r)&l(r, k ) .  (3.186) 

As shown in appendix equations (A.12) and (A.13) we get when 

( 3 . 1 9 ~ )  

(also given by Ford 1964 for 1 = 0); 

gcE,f (k ,  k)+ Ir(1 2ial-iuO+iv In- 
E 

p = k :  
€ -0 

-exp (3.19b) 
E 

To show the consistency with (3.5d), we rearrange the series (2.6) for gc.(p, k) as in 

t Use: ( 2 1 + 1 ) 5 ( 5 ) = P ; , , ( 5 ) - P ; - , ( 5 ) .  
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(3.15), and get 

1277 

- Ir(i +iv)( exp -icro+iv In- 
f 1 0  ( '") E 

1 

= r(l +iv)  exp i v  In- fc($, k). (3.20) 

Concerning the partial-wave expansion of t c (p ,p ' ;  k f ) ,  we show only how the 
first-order term t::) behaves near the energy shell.? (Incidentally, from (3.10) it 
follows that the anomalous factor lI'/' will not appear in fa ' ' . )  From ( 3 . 8 ~ )  we have 

( 3 

(3.21) 

giving 

where 

(3 .226)  

As Q l ( z )  is divergent when z + 1, we proceed in a different way when p ' + p .  From 
appendix equation (A.7) we get the following series (when (51 # 1):  

where 

Using (3.15), we write formally 

( 3 . 2 3 ~ )  

(3.236) 

( 3 . 2 4 ~ )  

(which is divergent.) Hence 

and 
v 

thf:(k, k ;  k ) =  vc,l(k, k ) =  --CL(/+ 1). 
k 

(3.25) 

t The complete expressions t J p ,  p ' ;  k.) for 1 = 0 and I = 1 have been given by van Haeringen (1977) 
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This result agrees with (3.17), which has the first-order term 

because of (3.13c),  and the definition (Magnus et a1 1966) 

w= rwm). 

4. Exponentially screened-Coulomb potential 

We consider the (Yukawa) potential 

(3 .26a)  

(3.266) 

4.1. Total amplitudes 

Gorshkov (1961) has shown that 

where the diverging phase 

A,= 4:) In--y (4 .26)  

For p # 0 the standard theory in 0 2 is valid, so that f ,  and g ,  can be obtained from 
t, (cf (2.12)). We get 

(4 .3)  

The second- and third-order terms have been calculated by Gyland (1976), who 
obtained: 

(2) 2kv2 A + R  
( p ,  p’ ;  k, )  = -i In- t 

R A - R ’  (4 .4a)  

where 

A = ( p  - P ’ ) ~  + 

R 2  = ( p  - P ’ ) ~ (  

- ( p  c L 2  + p ‘ 2 - 2 k : ) + 4 p 2 + 2 i - ,  cL3 
k k 

4 + - p [ ( p  P 2  - p ’ ) 2 ( p 2 + p ’ 2 + 2 k 2 ) -  ( p 2 - p ” ) ’ ]  + $ ( p  - p y .  

(4 .46)  

(4 .4c)  

(These expressions with p ’  = k and p = k will-after some reductions-lead to f;’ for 
arbitrary p, in the form given by, e.g., Dalitz (1951).) 
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The third-order term is given only for p = 0: 

(kf -p‘-ip)(k -2ip)  
) -Liz( (k +p’+ip)(k + 2 i p )  

(k+p’- ip)(k-2ip)  
(k, - p ’  + ip)(k + 2ik)  x [Liz( 

)]. (4.5) 
(k +p’-ip)(-ip) 

(k, -p’+ip)(2k +ip) 

(We have kept E where zeros may occur.) 
To obtain the screening limit it is important that the values of p and p ’  should be 

fixed (and E + 0) before p + 0. An exception is the first-order term (4.3), which for all 
p and p ’  becomes 

Off both half-shells (4.4) and (4.5) yield when 

2kv2 
, i(1 + K )-’” In t:’(p, p ’ ;  k)  - - 

(P -P 1 
1 + (1 + K ) ’ l 2  

1 - (1 + K ) 1 / 2  
p # k # p ’ :  

= tk2’(p, p ‘ ;  k)  in (3.8b), (4.7) 

p = 0, p‘ # k :  t ,  (3) (0, p’; k)  -+ [Liz( z) -Liz( z)] s - 4  p 

= tL3’(0, p ’ ;  k)  in (3.8e). (4.8) 

This agrees with the result of Gyland, who-by means of a variant of Gorshkov’s 
technique-shows that off both half-shells the limit of tw for p + 0 is given by a series 
with finite terms, which he sums to t,. 

For p‘ = k, p # k, i.e. on one half-shell, one may according to (2.2) and ( 2 . 5 ~ )  write 

d3r exp(-ip.r)V,(r)$,(r, k). (4.9) 

If we introduced the limiting form (4.2a) for $, in (4.9), it appears from (3.5) (with 
E = p )  that we would get for 

t r ( p ,  k; k)- exp(iA,)gdp, k). (4.10) 

This assumption can be checked in second and in third order, by choosing p ’  = k in 
(4.4) and (4.5). We then get (for p # k): 

,=O 
p # k :  

(4.11) 
(2) 2 k v 2 2 ( i l n i p L + - r r + i l n ? ) ,  2 

ljm r, (0 ,p ’ ;  k,)- - 

2v3[ (f,”,- 

P +k w = o ( p - k )  p -k  2 CL €+O 

] 2u3(a2  l (  In- y)2 -1-In- .a 2k) , Li2(-l) +- --- lim t f ’ ( 0 , p ’ ;  kc)-- Liz - 
P +k W = O  k k 24 2 2 P  €+O 

(4.12) 
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(cf Grobner and Hofreiter 1950). Comparison with (3.6) reveals that in fact, for p # k, 

(4.13) lim f f ) ( p , p ‘ ;  kf)- g?’(p,  k)+iv 
P + k  W - 0  
€ + O  

1 2k 
P lim +k f f ’ ( 0 , p ’ ;  kE)- w -0 gr’(0, k)+iv gL2’(0, k)+-[i~(ln;-y)]~g?)(O, 2 k ) .  
f + O  

(4.14) 

Notice the importance of choosing p ’  and p and making E + 0 before we let p = 0. 

For p’  = k and p = k, i.e. o n  both half-shells, one might further expect from (4. IO) 

Hence (4.10) is confirmed to O(v3) .  

For example, (4.7) and (4.8) would of course not lead to (4.11) and (4.12). 

and (3.5d) (with E = p )  that the value of 

lim lim tW(p,  k ;  k,) [=lim f,(A k)l (4.15a) 
W - 0  p - t k  t l = O  

would be equal to 

(4.15 b) 
2k 

exp(iA,) w = O  lim lim p - k  gc,(p, k ) =  exp(iA,,)T(l +iv)  exp(iv ln--)fc(fi, k ) .  

This, however, is not correct. As 
2 2  

U T  
l r ( i+ iv) l=  I - - + o ( Y ~ ) ,  

12 (4.16) 

the tentative relation (4.15) can be disproved, and replaced, by calculating (4.15a) to 
third order. The first- and second-order terms are obtained from (4.3) and (4.4), while 
the third-order term is given by Kacser (1959). Collecting these results, we get on the 
total energy shell 

because 

go = arg r (1  -iv) = vy + o(2). (4.17b) 
Comparing with (3.3~) and (4.26), we therefore assume that 

rather than (4.156). Hence 
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which is Dalitz's (1951) conjecture. Note the doubling of the (diverging) phase in 
(4.18a), as compared with ( 4 . 2 ~ ) .  The necessity of letting p + p ' + k  (and E + O )  
before p + 0 has been pointed out by Gyland (1976). 

In passing, it seems important to emphasise the different values of the two limits 
(3.9) (with E = p )  and (4.186). In spite of ( 4 . 2 ~ )  we get 

(4.19) 

rather than 1. The reason must be (Gyland and Kolsrud 1976) that during the 
integration we use $,(r, k )  for r + CO while still ,LL > 0. Then $& behaves asymptotic- 
ally in the standard way (2.1), in contrast to $,(r, k ) ,  which behaves like (3.2b). As 
p = k, these asymptotic values contribute more to the integral than when p # k as in 
(4.10). 

4.2.  Partial amplitudes 

We consider only the first-order term tlf,! = v&,/, and observe the behaviour near the 
energy shell. (Compare with (3.21-3.26)) From (4.3) we get 

(4.20) 

Hence, when 

When p = p '  = k, we have 

(4.22) 

1 2 + p 2 / 2 k 2  - '3 +polynomial in p2 /2k2  
n = l  

(4.23 a )  

1 
k 

y - $ ( I  + l ) ]  = -{A, +U;')}, (4.23b) 

according to (3.236), (3.26) and (4.26). This corresponds to (4.18a), which by means 
of (3.14)-(3.15) can be written 

b ( P ,  k ;  k)=f,(p*, k )  

1 -- - 1 (21 + 1Xexp[2i(hw + ( T I ) ]  - 1)Pi(5). 2ik 1-0 
( 4 . 2 4 ~ )  
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Hence 
1 

fF , f (k)Z0 ~ I e x P [ 2 i ( A ,  +m)l-  11, 

the first-order term of which is (4.23b). 

(4.246) 

Note that in these first-order partial amplitudes it is important to specify p and p ’  
before p + 0. In the total amplitudes this was not necessary until the second order. 

5. Cut-off Coulomb potential with tail 

We shall use a ‘smoothly’ cut-off Coulomb potential, namely 

where 
WR (R) = V4R 1, i.e. WR(R)= 1 /R.  

We also require that for n = 1,2,  . . 

(5 . la )  

(5.lb) 

( 5 . 1 ~ )  

The reason for using the ‘tail’-potential WR(r) is the following: with q = p ’ - p  we 
get from (2.4) by partial integration 

With a ‘sharp’ cut-off, i.e. WR(r) = 0, one would get 

V R  ( P , P ’ ) = T ( ~ - C ~ S ~ R ) ,  
4 

(5.3) 
sharp 2kv 

which has no limit when R + CO (cf Semon and Taylor 1976 for this problem). 

5.1. Wavefunctions and scattering amplitude 

The radial functions are (see (3.13)): 

r 5 R :  4S,i(r9 k ) =  U&,i(r, k )  - af  exp(igl)-sin kr-I-+v 7T 

kr >> 1 kr 2 
( k R > > l )  

r *R:  d:.l(rl k ) z  

v 1n(2kR)+gf +TR(r)), 

(5.4a) 

(5.4b) 

( 5 . 5 ~ )  
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where the 'tail'-phase is given by 
r r  

(5.56) 

The justification of ( 5 . 5 ~ )  is that the radial differential equations are satisfied when 
R ' 0 0 ,  because of (5.lb,  c). 

As 4&(r, k )  must have the standard form (2.7) when r + m ,  (because 
rVR(r) - 0 for finite R), we see that 

r-m 

SI = + AR, ( 5 . 6 ~ )  

where 

It also follows from (2.7), (5.5) and (5.6) that 

a/ = exp(iAI?). (5.7) 

Because A R  is independent of I, we get for r S R, by summing the series (2.6) for 
*C, 

For kr 3 k R  >> 1 the equations (5.5a), (5.6) and (5.7) show that the 'outer' function 
can be written 

+;(r, k)=exp(ik.r+iTR -iTR(r))+fc(i, k)-exp[ikr+2iv l n ( 2 k ~ ) + i ~ R  +i~R(r ) ] ,  
1 
r 

(5 .9)  

which is confirmed by using (3.4). Furthermore we get the r = R  (note that T R ( ( R ) =  

0): 

expF3. +Z(R, k )  = exp(i7R) exp(ik.R)+exp[2iv In(2kR)I fc i 
which according to (5 .8) ,  (5.66) and (3.26) is equal to the inner function 

+;(R, k ) =  exp[iv l n ( 2 k R ) + i ~ ~ ]  

x exp[-iv ln(2kR)+ik.R]+exp[iv ln(2kR)]fc i 
And lastly, (5.9) assumes the standard asymptotic form 

exp(ikr) 
+;(r ,  k ) -  exp(ik.r)+fR(i, k)-, 

r-m r 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

Recalling (5.66), we see that 
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Alternatively, we might use ( 5 . 6 ~ )  and rearrange the series for fR, as in (3.15), to get 

(5.14) 

5.2. To ta 1 t- ma trix 

According to (2.3) t is given by U (e.g. by iteration). As VR + vc when R +a, and 
t c (p ,  pf ;  k )  exists for p # k # p ’  we therefore expect that off both half-shells 

lim ?R(P,P’; k ) =  t d p , ~ ’ ;  k), (5.15) 
R-,X 

like the earlier example (4.6)-(4.8). 
For pf = k and p arbitrary, § 2.1 tells that 

tR(p, k ;  k ) =  -- d3r exp(-ip.r)VR(r)(LR(r, k ) ,  (5.16) 

(5.17) 

As VR(r)+ Vc(r) when R +a, the equations (5.8),  (3.5), (5.13) and (5.17) show that 

277 m /  

tR(p, k ;  k)p=k =fR(b, k ) .  

( 5 . 1 8 ~ )  
(5.18b) 

like (4.10) and (4.18a), respectively. The reason why the integral (5.16) with a 
limiting expression for (LR now can be used also on the total energy shell ( p ‘  = k = p ) ,  
in contrast to the Yukawa case (4.9), (4.15), etc, is believed to be the fact that we 
know the exact wavefunction (LR(r, k )  for finite (but large) value of R, while (Lw(r, k )  
was only known near the limit (U = 0. 

It seems therefore worthwhile also in this example to examine more closely the 
limiting processes in (5.18). As the integral (5.16) exists for finite R, it can be written 
as a limiting value, namely 

tR(p, k ;  k ) =  lim I ( p )  (5 .194  
I r + O  

where 

m 
I ( p ) =  -g / d3r exp(-ip.r) exp(-pr)V,(r)(L;(r, k )  

( r < R )  

m 
= -- 2T exp(iAR)[ 5 d3r  exp(4p.r  -pr)Vc(r)t,bc(r, k )  (=I11 

- J d3r exp(-ip.r - pr)Vc(r)(Lc(r, k )  
( r > R )  
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-E 1 d3r exp(-ip. r) WR ( r ) $ z  (r, k ) .  (=I31 
r > R )  

Recalling (3.5a)-(3.5d) (with E = p )  we get 

11 --+ exp(iA~ )gc(P, k ) ,  
U-0 

p f k :  

p = k :  
U -;o 

As shown in appendix 4 we get, with q = k - p ,  

2ku  
p f k :  I2 - - exp( iTR)T  cos(qR), 

P-+O 4 
2ku  
4 

p = k :  I2 -- -exp(i . rR)T cos(qR) 
@ -0 
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(5.196) 

( 5 . 2 0 ~ )  

(5.20b) 

( 5 . 2 1 ~ )  

(5.21 b )  

At least we find in appendix 5: 

( 5 . 2 2 ~ )  2ku  
4 

2ku  
4 

p f k :  I3 = e x p ( i 7 R ) ~  cos(qR), 

p = k :  I3 = exp(iTR)Tcos(qR) 

+ exp[ 2 i U 1 n ( 2  k R  )] fc( p*, k )[ exp ( 2  i TR ) - exp(i TR )] . (5.22b) 

Inserting these results in (5.19a, b ) ,  we get in fact-after rather intricate cancel- 

Without the tail potential WR(r), i.e. with a sharp cut-off, (5.19b) shows that 

( 5 . 2 3 ~ )  

lations-the expected results (5.18a, b) .  

I3 = 0,  which leads to 

tgarp(p, k ;  k ) p Z k  - exp[iu ln(2kR)]gc(p, k ) - ~ c o s ( q R ) ,  

(5 .236)  t g a r p  ( p ,  k ;  k ) p = k  - exp[2iu ln(2kR)]fc(p*, k ) - ~  cos(qR), 

in contrast to the result of Ford (1964),  namely ( 5 . 1 8 ~ ) .  The first order term is for all 
p and p ‘  equal to 

2ku  
4 
2 k u  
9 

R ==a 

R -m 

2ku  
4 

tzar’ ( p ,  p ’ ;  k)‘”= uZarP ( p ,  p ‘ ) =  ~ [ l  -COS(@)], (5.24) 

which cannot have ( 3 . 8 ~ )  as limit. 

5.3. Partial t-matrix 

The partial matrix t ~ , , ( p ,  p ’ ;  k )  can be found for p ‘  = k and p arbitrary, when R is 
large but finite. Then (2.9) and ( 2 . 1 2 ~ )  from the ‘short’-range theory show that 

~ R . I ( P ,  k ;  k ) =  -2m drr2j l (pr)VR(r)~R.I(rr  k ) .  (5.25) 
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This can be written as lim,,o J ( p ) ) ,  where 

J ( p ) =  -2m jo dr r2jl(pr) e-"vc(r)q5s,l(r, k )  
m 

(=Ji) 

+2m J dr r2jl(pr) e-'"Vc(r)c$&(r, k) (= J 2 )  
R 

-2mIRm drr2jl(pr)WR(r)q5~,r(r, k). ( = J 3 ) .  (5.26) 

With ( 5 . 4 ~ )  and (5.7) the first integral is 

Jl = exp(iAR)(-2m) dr r2jl(pr) e-FrVc(r)c$c,,(r, k), (5.27) lorn 
which compared with (3.18) and (3.19) yields: 

p # k :  J I  - exP(iAR )&,r ( p ,  k ), ( 5 . 2 8 ~ )  
F - 0  

(5.283) 

Using the asymptotic forms of j l  and of q5s.l (namely (5.43)), we write the second 

1 2k i' 
J~ - exp(iAR + iao- Im exp(ial)r(l+ iv)( -) . 

k CL 
p = k :  

I / = O  

integral in (5.26) as 

J2 = -- exp(iAR + i q )  Re exp(iq) 
v 

P 

x IRm drf exp(-pr +iv ln(2kR)]{exp[i(k -p)r]-(-1)' exp[i(k +p)r]}. 

(5.29) 
By partial integrations and comparison with appendix (A.18), we get 

p # k :  

p = k :  

5 2 -  F - 0  O ( i ) .  

1 
F-0 k 

J2 - exp(iAR +iuI)- Im exp(ial) 

(5.30~) 

(5.306) 
With ( 5 . 5 ~ )  the third integral in (5.26) becomes: 

v 
J3 =-exp(iAR + i q )  Re exp[iq+iv ln(2kR)I 

P 

x [ dr wR(r) exp[i~~(r)]{exp[i(k -p)r] -(-l)' exp[i(k +p)r]}. (5.31) 

By partial integration and by recalling (5.56): vwR(r)= &(r), we get 

p f k :  3 3  = O(i ) ,  ( 5 . 3 2 ~ )  

1 
p = k :  J3 = exp(iAR + iar)- Im exp(iaj)[exp(iA~)- (2kR)'"I. (5.323) k 
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Inserting these expressions in (5.26), we obtain at last 

(5.33a) 

(5.336) 

(Note. The sum of (5.30a) and (5.32a) is of O(R-’).) With a treatment like (4.24) we 
may write (5.336) in the form 

fR,i(k, k ; k)  = fR,i(k) - exp(2iA~)f=,r(k 1, (5.33c) 
R =P) 

i.e. in accordance with (5.186). 

the sharp cut-off. 
The results (5.33) for 1 = 0 have been obtained by Ford (1964), in spite of his use of 

6.  Conclusion 

To summarise, our conjecture is the following. With 

lim Vu(r) = V,(r), Vu (r) continuous, 
U-0 

one will get: 

p’f  k Z p :  tu - t , ( p , p ’ ;  k), 
U -0 

p‘ = k = p :  tu = g, =fu - f,(p̂ , k) exp(2iAu). (6.4) 
U =o 

The same relations hold for the partial amplitudes. The Coulomb quantities t,, g, and 
fc are defined for p’ # k # p, p # k and p = k, respectively. The absolute values of t ,  
and g,, however, exist on the total energy shell, and are given by 

lim lim It,(p, p ‘ ;  k,)l= I f c l .  Ir(1 +iu)l’, 
e - 0  p - k  

p-k 

Examples of Vu and Au are: 

A@ = v ( l n y - y ) ;  2k 

AR = u(ln(lkR)+ B )  dr  wR(r) . 

(6.7a) 

(6.76) 

(6.8a) 

(6.86) 



1288 M Kolsrud 

Acknowledgments 

I wish to thank M Gavrila, N K Gyland and J Midtdal for valuable information. 

Appendix 1 

The Coulomb scattering amplitude ( 3 . 3 ~ )  can be written (with 5 = p ^ . $ )  

The expansion of (1 - 5)iy can be inverted, which gives 

(A.2) 
df T(1-b) r ( l  +iv)  

d5 

+ l  

d((1-t)i”7((2- 1)’=2’”(21+ 1)- r(-iv) T(1 + 2 +iv)’ al =I 
21! -1 

(by partial integrations). Hence 

as in Magnus et a1 (1966), with the Gegenbauer polynomials C?!? (6) = dPl(()/d(. 

Observing that 
The Ith term is of O(I-’)X 0 ( l 1 l 2 ) =  0(F1l2) for 1 >> 1 (Magnus et a1 1966).t 

T(1 - i v )  r(l + 2 - iv) r(1- iv) 
r ( l+ iv )  r ( ~ + 2 + i v ) -  r (1+2+iv)  2iv(21+ l), (‘4.4) - e x p ( 2 i ~ ~ l - ~ ) - e x p ( 2 i ~ ~ ~ + ~ )  = ___- 

we can write (A.3) in the form 

Appendix 2 

An expansion of (1 -e)-’ is of course given in the first-order term of (A.5). It is, 
however, easily obtained in the following way: 

according to a formula for Legendre polynomials. Hence-for t2 # 1 

where $ ( I )  is given in (3.236). 

t Nofe added in proof. There is numerical evidence that the series (A.3) is also divergent, like (3.16) 
(J Midtdal 1978, private communication). 
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Appendix 3 

To evaluate the integral (3.18b), where q5c,l is given in (3.13a), we use a contour 
integral representation of the confluent hypergeometric function F in &', and get 

With the Laplace-transform (Magnus et a1 1966) we get 

1 

gc,,[(p,  k ) =  -vi-;) e""/*l!T(-l-iv)C(E), 

where 

with 

p* = k i p  +iE. 

('4.9) 

(A.lO) 

( A . l l )  

The path of integration around 0 and 2k may be deformed to two clockwise paths 
around the poles p +  and p - ,  and a circle with infinite radius. The contributions from 
the pair of parallel paths extending from p +  and p -  to infinity cancel. The contribution 
from the large circle vanishes because the integrand is of O ( Z - ~ ) .  Hence the only 
contributions are from the poles p +  and p - ,  so that 

(A.12) 

When p # k, we can put E = 0 in (A.12) to get g , , l (p ,  k). 
When p = k, the factor ( p  - k +iE)'siu vanishes with E ,  except when differentiated 1 

times. Hence 

go,1(k, k)- e""/2(-1)'ivT(-l-iv)-Im(2k)-i"(l+iv)(l- l + i v ) .  . . (1 +iv)(ie)i" 
1 

€ -0 k 

1 r ( i  -iv) (g)+ 
k r ( l + l - i v )  E 

= - - r ( l + l - i v ) I m  

(A.13) 
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Appendix 4 

Consider the integral in (5.19b) 

m 
I 2  = - exp(iAR) [ d3r exp(-ip.r -pr)V,(r)&(r, k). (A.14) 

2%- r > R )  

When kR >> 1,  the asymptotic forms (3.2b) and (3.4) (slightly modified) shall be used, 
so that 

exP (- w )  
r I 2  = -exp(iAlZ)- k’ J d3r exp(-ip.r) 

2‘T ( r > R )  

1 
r 

exp[ik.r-iu In(2kr)]+fc(i, k)- exp[ikr+iu In(2kr)l) 

exp[-iu ln(2kr)l exp(iq.r) 

2%- exp(i kr) 
1Pr r 

+-[exp(ipr)a(n, +n,)-exp(-ipr)a(n, -n,>]fc(;, k)-----(2kr)’v) 

1 “  
= -exp(iAR)2ku(- 1 dr sin(qr) exp[-pr - iu  ln(2kr)l 

+-f,(-p*, k) J dr exp[-Cc.r+i(k +p)r](2kr)-’+’” 

q R  
W k 

‘P R 

k 
1P R 

(A. 15) 
W 

-,f,(p*, k) I dr exp[-pr +i(k 

where q = k - p .  From partial integration we get to O(Ro): 

1 2  - -exp[iAR - i u  l n ( 2 k R ) I ~  cos(qR)+exp(iAR)fc(p*, k ) D ( p ) ,  

where 

2kv 
4 

(A.16) 
w =O 

2uk2 OD 

D ( p ) = -  dr exp[-pr+i(k --p)r](2kr)-’+’”. 
‘ p  R 

(A. 17)  

When p # k, partial integration shows that D ( p ) =  O(R-’). When p = k, we write 

ivr(l +iu)+(2kR)’”. (A. 18) 

Here we have used iv = lim,,o(iu + E ) ,  because (A. 17) exists. We also point out that 
when p + 0, R is finite. The limit R + 00 shall be taken at the very end, according to 
our procedure. 
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Appendix 5 

Consider I3 in (5.196): 

m = -- J d3r exp(-ip.r)WR(r)q<(r, k). 
2lT ( r > R )  

1291 

(A.19) 

Substituting (5.9) and (3.4), we get 

J d3r exp(-ip.r)wR(r)exp(iTR) explik. r-iTR(r)l I3 = - 
277 

+exp[2iv ln(2kR)]fc(i, k)- exp[ikr + i ~ ~ ( r ) ] )  
1 
r 

( 

J (  dr r2wR(r) dn ,  e x p [ - i ~ ~ ( r ) ]  exp(iq.r) 

21T + exp[2iv ln(2kR)]-[exp(ipr)S(nr + 0,) 
'Pr 

- exp(-ipr)S(fl, - fl,)]fc(i, k)- exp(ikr + iTR (r))) 
1 
r 

drrwR(r) exp[-i~R(r)] sin(qr) 

-exp[2iv ln(2kR)j fc(-@, k)- J dr exp[i(k +p)r]- exp[i~R(r)] 
k "  d 
P R  dr 

(A.20) 

(recall (5.66)). Using partial integrations, we get, apart from terms of O(R-'), when 
p f k :  

) 
k "  d 
P R  dr 

+exp[2iv ln(2kR)]fc(@, k)- J dr exp[i(k -p)r]-exp[i~R(r)] , 

2 vk 
= e x p ( i T R ) T  cos(@), 

4 

where (5.16) has been used. But when p = k, we get 

(A.21) 

2 vk 
4 

1 3 ( p  = k)  = exp(i .rrz)T cos (qR)+exp[ i~~  + 2iv ln(2kR)]fc(p^, k)[exp(iTR)- 11. 

(A.22) 

Appendix 6 

An integral equation for gc(p ,  k) can be established in the following way. With a 
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screened potential the equations (2.3) and ( 2 . 5 ~ ~ )  show that 

(A.23) 

where p o  is arbitrary. Hence 

As g ( p ,  k ) +  gc(p, k )  exp[iA(k)] when U + uc. equation (A.24) is valid also for the 
Coulomb case, because the phases A ( k )  cancel. 

Alternatively, (A.24) can be deduced from the following equation, which is valid 
also for Coulomb scattering, (given by Kolsrud 1977), 

(A.25) 

where ( c /  is arbitrary. Obviously ( E k  - H O ) l + k )  = VI&). Choosing (cl  = (pol V, and 
multiplying (A.25) by ( p l  V, we get 

(A.26) 

which equals (A.24) (recall (2.2)). In a similar way t ( p ,  p ’ ;  k )  may be treated. 
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